This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the set exponentiation ( B ^m A ) is a superset of the set of all functions from A onto B . (Contributed by AV, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapfoss | |- { f | f : A -onto-> B } C_ ( B ^m A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- m e. _V |
|
| 2 | foeq1 | |- ( f = m -> ( f : A -onto-> B <-> m : A -onto-> B ) ) |
|
| 3 | 1 2 | elab | |- ( m e. { f | f : A -onto-> B } <-> m : A -onto-> B ) |
| 4 | fof | |- ( m : A -onto-> B -> m : A --> B ) |
|
| 5 | forn | |- ( m : A -onto-> B -> ran m = B ) |
|
| 6 | 1 | rnex | |- ran m e. _V |
| 7 | 5 6 | eqeltrrdi | |- ( m : A -onto-> B -> B e. _V ) |
| 8 | dmfex | |- ( ( m e. _V /\ m : A --> B ) -> A e. _V ) |
|
| 9 | 1 4 8 | sylancr | |- ( m : A -onto-> B -> A e. _V ) |
| 10 | 7 9 | elmapd | |- ( m : A -onto-> B -> ( m e. ( B ^m A ) <-> m : A --> B ) ) |
| 11 | 4 10 | mpbird | |- ( m : A -onto-> B -> m e. ( B ^m A ) ) |
| 12 | 3 11 | sylbi | |- ( m e. { f | f : A -onto-> B } -> m e. ( B ^m A ) ) |
| 13 | 12 | ssriv | |- { f | f : A -onto-> B } C_ ( B ^m A ) |