This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | map1 | ⊢ ( 𝐴 ∈ 𝑉 → ( 1o ↑m 𝐴 ) ≈ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | ⊢ 1o = { ∅ } | |
| 2 | 1 | oveq1i | ⊢ ( 1o ↑m 𝐴 ) = ( { ∅ } ↑m 𝐴 ) |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | snmapen1 | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } ↑m 𝐴 ) ≈ 1o ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } ↑m 𝐴 ) ≈ 1o ) |
| 6 | 2 5 | eqbrtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 1o ↑m 𝐴 ) ≈ 1o ) |