This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A scalar product is nonzero iff both of its factors are nonzero.
(Contributed by NM, 3-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
lvecmul0or.v |
|
|
|
lvecmul0or.s |
|
|
|
lvecmul0or.f |
|
|
|
lvecmul0or.k |
|
|
|
lvecmul0or.o |
|
|
|
lvecmul0or.z |
|
|
|
lvecmul0or.w |
|
|
|
lvecmul0or.a |
|
|
|
lvecmul0or.x |
|
|
Assertion |
lvecvsn0 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecmul0or.v |
|
| 2 |
|
lvecmul0or.s |
|
| 3 |
|
lvecmul0or.f |
|
| 4 |
|
lvecmul0or.k |
|
| 5 |
|
lvecmul0or.o |
|
| 6 |
|
lvecmul0or.z |
|
| 7 |
|
lvecmul0or.w |
|
| 8 |
|
lvecmul0or.a |
|
| 9 |
|
lvecmul0or.x |
|
| 10 |
1 2 3 4 5 6 7 8 9
|
lvecvs0or |
|
| 11 |
10
|
necon3abid |
|
| 12 |
|
neanior |
|
| 13 |
11 12
|
bitr4di |
|