This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, justified by Theorem axpre-lttrn . Note: The more general version for extended reals is axlttrn . Normally new proofs would use lttr . (New usage is discouraged.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-pre-lttrn | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶 ) → 𝐴 <ℝ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cr | ⊢ ℝ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℝ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℝ |
| 5 | cC | ⊢ 𝐶 | |
| 6 | 5 1 | wcel | ⊢ 𝐶 ∈ ℝ |
| 7 | 2 4 6 | w3a | ⊢ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) |
| 8 | cltrr | ⊢ <ℝ | |
| 9 | 0 3 8 | wbr | ⊢ 𝐴 <ℝ 𝐵 |
| 10 | 3 5 8 | wbr | ⊢ 𝐵 <ℝ 𝐶 |
| 11 | 9 10 | wa | ⊢ ( 𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶 ) |
| 12 | 0 5 8 | wbr | ⊢ 𝐴 <ℝ 𝐶 |
| 13 | 11 12 | wi | ⊢ ( ( 𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶 ) → 𝐴 <ℝ 𝐶 ) |
| 14 | 7 13 | wi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶 ) → 𝐴 <ℝ 𝐶 ) ) |