This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of
Gleason p. 173. Note that in our postulates for complex numbers,
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltxr | ⊢ < = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clt | ⊢ < | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | cr | ⊢ ℝ | |
| 5 | 3 4 | wcel | ⊢ 𝑥 ∈ ℝ |
| 6 | 2 | cv | ⊢ 𝑦 |
| 7 | 6 4 | wcel | ⊢ 𝑦 ∈ ℝ |
| 8 | cltrr | ⊢ <ℝ | |
| 9 | 3 6 8 | wbr | ⊢ 𝑥 <ℝ 𝑦 |
| 10 | 5 7 9 | w3a | ⊢ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) |
| 11 | 10 1 2 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } |
| 12 | cmnf | ⊢ -∞ | |
| 13 | 12 | csn | ⊢ { -∞ } |
| 14 | 4 13 | cun | ⊢ ( ℝ ∪ { -∞ } ) |
| 15 | cpnf | ⊢ +∞ | |
| 16 | 15 | csn | ⊢ { +∞ } |
| 17 | 14 16 | cxp | ⊢ ( ( ℝ ∪ { -∞ } ) × { +∞ } ) |
| 18 | 13 4 | cxp | ⊢ ( { -∞ } × ℝ ) |
| 19 | 17 18 | cun | ⊢ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) |
| 20 | 11 19 | cun | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) ) |
| 21 | 0 20 | wceq | ⊢ < = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) ) |