This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| ltord.2 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) | ||
| ltord.3 | ⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) | ||
| ltord.4 | ⊢ 𝑆 ⊆ ℝ | ||
| ltord.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| ltord2.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐵 < 𝐴 ) ) | ||
| Assertion | ltord2 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ 𝑁 < 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | ltord.2 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) | |
| 3 | ltord.3 | ⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) | |
| 4 | ltord.4 | ⊢ 𝑆 ⊆ ℝ | |
| 5 | ltord.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 6 | ltord2.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐵 < 𝐴 ) ) | |
| 7 | 1 | negeqd | ⊢ ( 𝑥 = 𝑦 → - 𝐴 = - 𝐵 ) |
| 8 | 2 | negeqd | ⊢ ( 𝑥 = 𝐶 → - 𝐴 = - 𝑀 ) |
| 9 | 3 | negeqd | ⊢ ( 𝑥 = 𝐷 → - 𝐴 = - 𝑁 ) |
| 10 | 5 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → - 𝐴 ∈ ℝ ) |
| 11 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ) |
| 12 | 1 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
| 13 | 12 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝑦 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 14 | 11 13 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 15 | 14 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐵 ∈ ℝ ) |
| 16 | 5 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐴 ∈ ℝ ) |
| 17 | ltneg | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ - 𝐴 < - 𝐵 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐵 < 𝐴 ↔ - 𝐴 < - 𝐵 ) ) |
| 19 | 6 18 | sylibd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → - 𝐴 < - 𝐵 ) ) |
| 20 | 7 8 9 4 10 19 | ltord1 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ - 𝑀 < - 𝑁 ) ) |
| 21 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐷 → ( 𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ ) ) |
| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
| 23 | 11 22 | sylan | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
| 24 | 23 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → 𝑁 ∈ ℝ ) |
| 25 | 2 | eleq1d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ ) ) |
| 26 | 25 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 27 | 11 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 28 | 27 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → 𝑀 ∈ ℝ ) |
| 29 | ltneg | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁 < 𝑀 ↔ - 𝑀 < - 𝑁 ) ) | |
| 30 | 24 28 29 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑁 < 𝑀 ↔ - 𝑀 < - 𝑁 ) ) |
| 31 | 20 30 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ 𝑁 < 𝑀 ) ) |