This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltp1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| divgt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lemul1ad.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| ltmul12ad.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| ltmul12ad.4 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| ltmul12ad.5 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ltmul12ad.6 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | ||
| ltmul12ad.7 | ⊢ ( 𝜑 → 𝐶 < 𝐷 ) | ||
| Assertion | ltmul12ad | ⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | divgt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lemul1ad.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | ltmul12ad.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | ltmul12ad.4 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 6 | ltmul12ad.5 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 7 | ltmul12ad.6 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | |
| 8 | ltmul12ad.7 | ⊢ ( 𝜑 → 𝐶 < 𝐷 ) | |
| 9 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 10 | 5 6 | jca | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 11 | 3 4 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
| 12 | 7 8 | jca | ⊢ ( 𝜑 → ( 0 ≤ 𝐶 ∧ 𝐶 < 𝐷 ) ) |
| 13 | ltmul12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 ≤ 𝐶 ∧ 𝐶 < 𝐷 ) ) ) → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐷 ) ) | |
| 14 | 9 10 11 12 13 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐷 ) ) |