This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltp1d.1 | |- ( ph -> A e. RR ) |
|
| divgt0d.2 | |- ( ph -> B e. RR ) |
||
| lemul1ad.3 | |- ( ph -> C e. RR ) |
||
| ltmul12ad.3 | |- ( ph -> D e. RR ) |
||
| ltmul12ad.4 | |- ( ph -> 0 <_ A ) |
||
| ltmul12ad.5 | |- ( ph -> A < B ) |
||
| ltmul12ad.6 | |- ( ph -> 0 <_ C ) |
||
| ltmul12ad.7 | |- ( ph -> C < D ) |
||
| Assertion | ltmul12ad | |- ( ph -> ( A x. C ) < ( B x. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | |- ( ph -> A e. RR ) |
|
| 2 | divgt0d.2 | |- ( ph -> B e. RR ) |
|
| 3 | lemul1ad.3 | |- ( ph -> C e. RR ) |
|
| 4 | ltmul12ad.3 | |- ( ph -> D e. RR ) |
|
| 5 | ltmul12ad.4 | |- ( ph -> 0 <_ A ) |
|
| 6 | ltmul12ad.5 | |- ( ph -> A < B ) |
|
| 7 | ltmul12ad.6 | |- ( ph -> 0 <_ C ) |
|
| 8 | ltmul12ad.7 | |- ( ph -> C < D ) |
|
| 9 | 1 2 | jca | |- ( ph -> ( A e. RR /\ B e. RR ) ) |
| 10 | 5 6 | jca | |- ( ph -> ( 0 <_ A /\ A < B ) ) |
| 11 | 3 4 | jca | |- ( ph -> ( C e. RR /\ D e. RR ) ) |
| 12 | 7 8 | jca | |- ( ph -> ( 0 <_ C /\ C < D ) ) |
| 13 | ltmul12a | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |
|
| 14 | 9 10 11 12 13 | syl22anc | |- ( ph -> ( A x. C ) < ( B x. D ) ) |