This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddsublt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( ( 𝐴 + 𝐵 ) − 𝐶 ) < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 + 𝐵 ) < ( 𝐴 + 𝐶 ) ) ) | |
| 2 | 1 | 3comr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 + 𝐵 ) < ( 𝐴 + 𝐶 ) ) ) |
| 3 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 7 | 4 5 6 | ltsubaddd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) < 𝐴 ↔ ( 𝐴 + 𝐵 ) < ( 𝐴 + 𝐶 ) ) ) |
| 8 | 2 7 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( ( 𝐴 + 𝐵 ) − 𝐶 ) < 𝐴 ) ) |