This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddsublt | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> ( ( A + B ) - C ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd2 | |- ( ( B e. RR /\ C e. RR /\ A e. RR ) -> ( B < C <-> ( A + B ) < ( A + C ) ) ) |
|
| 2 | 1 | 3comr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> ( A + B ) < ( A + C ) ) ) |
| 3 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 4 | 3 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR ) |
| 5 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 6 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 7 | 4 5 6 | ltsubaddd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A + B ) - C ) < A <-> ( A + B ) < ( A + C ) ) ) |
| 8 | 2 7 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> ( ( A + B ) - C ) < A ) ) |