This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a nonempty word is an element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018) (Proof shortened by AV, 29-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswlgt0cl | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( lastS ` W ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> W e. Word V ) |
|
| 2 | eleq1 | |- ( N = ( # ` W ) -> ( N e. NN <-> ( # ` W ) e. NN ) ) |
|
| 3 | 2 | eqcoms | |- ( ( # ` W ) = N -> ( N e. NN <-> ( # ` W ) e. NN ) ) |
| 4 | 3 | adantl | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( N e. NN <-> ( # ` W ) e. NN ) ) |
| 5 | wrdfin | |- ( W e. Word V -> W e. Fin ) |
|
| 6 | hashnncl | |- ( W e. Fin -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
|
| 7 | 5 6 | syl | |- ( W e. Word V -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
| 8 | 7 | biimpd | |- ( W e. Word V -> ( ( # ` W ) e. NN -> W =/= (/) ) ) |
| 9 | 8 | adantr | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( ( # ` W ) e. NN -> W =/= (/) ) ) |
| 10 | 4 9 | sylbid | |- ( ( W e. Word V /\ ( # ` W ) = N ) -> ( N e. NN -> W =/= (/) ) ) |
| 11 | 10 | impcom | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> W =/= (/) ) |
| 12 | lswcl | |- ( ( W e. Word V /\ W =/= (/) ) -> ( lastS ` W ) e. V ) |
|
| 13 | 1 11 12 | syl2anc | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( lastS ` W ) e. V ) |