This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap two vectors with different spans. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnnecom.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnnecom.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsnnecom.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsnnecom.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsnnecom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsnnecom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspsnnecom.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspsnnecom | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnnecom.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnnecom.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsnnecom.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsnnecom.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspsnnecom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspsnnecom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 7 | lspsnnecom.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 10 | 6 | eldifad | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 11 | 1 3 9 5 10 7 | lspsnne2 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 | 11 | necomd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 13 | 1 2 3 4 6 5 12 | lspsnne1 | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |