This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two vectors belongs to their span. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprvacl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprvacl.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspprvacl.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprvacl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspprvacl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprvacl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspprvacl | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprvacl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprvacl.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspprvacl.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprvacl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspprvacl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspprvacl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 8 | 1 7 3 4 5 6 | lspprcl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 | 1 3 4 5 6 | lspprid1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 10 | 1 3 4 5 6 | lspprid2 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 11 | 2 7 | lssvacl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 12 | 4 8 9 10 11 | syl22anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |