This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindp1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspindp1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspindp1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspindp1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspindp2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspindp2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspindp2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspindp2.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| lspindp2.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| Assertion | lspindp2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspindp1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspindp1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspindp1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspindp2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspindp2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 7 | lspindp2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | lspindp2.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 9 | lspindp2.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 10 | 8 | necomd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 11 | prcom | ⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } | |
| 12 | 11 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , 𝑋 } ) |
| 13 | 12 | eleq2i | ⊢ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 14 | 9 13 | sylnib | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) |
| 15 | 1 2 3 4 6 5 7 10 14 | lspindp1 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) ) |