This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfnl | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellnfn | ⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑇 ∈ LinFn → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
| 3 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝑦 ) ) | |
| 4 | 3 | fvoveq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝑦 ) ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
| 7 | 4 6 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝐵 ) ) | |
| 9 | 8 | fvoveq1d | ⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 · ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 12 | 11 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
| 13 | 9 12 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑧 = 𝐶 → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝐶 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝑧 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 19 | 7 13 18 | rspc3v | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 20 | 2 19 | syl5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ∈ LinFn → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 21 | 20 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ∈ LinFn → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 22 | 21 | impcom | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |
| 23 | 22 | anassrs | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 𝐶 ) ) ) |