This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmod4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmod4.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | lmod4 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmod4.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodcmn | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd ) | |
| 4 | 1 2 | cmn4 | ⊢ ( ( 𝑊 ∈ CMnd ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) ) |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) ) |