This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between vector subtraction and addition. ( hvsubadd analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmod4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmod4.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lmodvaddsub4.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| Assertion | lmodvsubadd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmod4.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodvaddsub4.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 5 | 1 2 3 | ablsubadd | ⊢ ( ( 𝑊 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) |