This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlem.k | |- K = ( Scalar ` S ) |
|
| lmhmlem.l | |- L = ( Scalar ` T ) |
||
| Assertion | lmhmlem | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlem.k | |- K = ( Scalar ` S ) |
|
| 2 | lmhmlem.l | |- L = ( Scalar ` T ) |
|
| 3 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 4 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 5 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 6 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 7 | 1 2 3 4 5 6 | islmhm | |- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. a e. ( Base ` K ) A. b e. ( Base ` S ) ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) ) ) |
| 8 | 3simpa | |- ( ( F e. ( S GrpHom T ) /\ L = K /\ A. a e. ( Base ` K ) A. b e. ( Base ` S ) ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) -> ( F e. ( S GrpHom T ) /\ L = K ) ) |
|
| 9 | 8 | anim2i | |- ( ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. a e. ( Base ` K ) A. b e. ( Base ` S ) ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) |
| 10 | 7 9 | sylbi | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K ) ) ) |