This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ideal system is an algebraic closure system on the base set. (Contributed by Stefan O'Rear, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlacs.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| lidlacs.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) | ||
| Assertion | lidlacs | ⊢ ( 𝑊 ∈ Ring → 𝐼 ∈ ( ACS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlacs.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | lidlacs.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) | |
| 3 | lidlval | ⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | |
| 4 | 2 3 | eqtri | ⊢ 𝐼 = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
| 5 | rlmlmod | ⊢ ( 𝑊 ∈ Ring → ( ringLMod ‘ 𝑊 ) ∈ LMod ) | |
| 6 | rlmbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) | |
| 7 | 1 6 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
| 8 | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | |
| 9 | 7 8 | lssacs | ⊢ ( ( ringLMod ‘ 𝑊 ) ∈ LMod → ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
| 10 | 5 9 | syl | ⊢ ( 𝑊 ∈ Ring → ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
| 11 | 4 10 | eqeltrid | ⊢ ( 𝑊 ∈ Ring → 𝐼 ∈ ( ACS ‘ 𝐵 ) ) |