This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv2a | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C / B ) <_ ( C / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 | |- ( C e. RR -> ( C e. RR -> ( C e. RR /\ C e. RR ) ) ) |
|
| 2 | 1 | pm2.43i | |- ( C e. RR -> ( C e. RR /\ C e. RR ) ) |
| 3 | 2 | adantr | |- ( ( C e. RR /\ 0 <_ C ) -> ( C e. RR /\ C e. RR ) ) |
| 4 | leid | |- ( C e. RR -> C <_ C ) |
|
| 5 | 4 | anim1ci | |- ( ( C e. RR /\ 0 <_ C ) -> ( 0 <_ C /\ C <_ C ) ) |
| 6 | 3 5 | jca | |- ( ( C e. RR /\ 0 <_ C ) -> ( ( C e. RR /\ C e. RR ) /\ ( 0 <_ C /\ C <_ C ) ) ) |
| 7 | 6 | ad2antlr | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( ( C e. RR /\ C e. RR ) /\ ( 0 <_ C /\ C <_ C ) ) ) |
| 8 | 7 | 3adantl2 | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( ( C e. RR /\ C e. RR ) /\ ( 0 <_ C /\ C <_ C ) ) ) |
| 9 | id | |- ( ( A e. RR /\ B e. RR ) -> ( A e. RR /\ B e. RR ) ) |
|
| 10 | 9 | ad2ant2r | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A e. RR /\ B e. RR ) ) |
| 11 | 10 | adantr | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ A <_ B ) -> ( A e. RR /\ B e. RR ) ) |
| 12 | simplr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < A ) |
|
| 13 | 12 | anim1i | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ A <_ B ) -> ( 0 < A /\ A <_ B ) ) |
| 14 | 11 13 | jca | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ A <_ B ) -> ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ A <_ B ) ) ) |
| 15 | 14 | 3adantl3 | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ A <_ B ) ) ) |
| 16 | lediv12a | |- ( ( ( ( C e. RR /\ C e. RR ) /\ ( 0 <_ C /\ C <_ C ) ) /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ A <_ B ) ) ) -> ( C / B ) <_ ( C / A ) ) |
|
| 17 | 8 15 16 | syl2anc | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C / B ) <_ ( C / A ) ) |