This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmf0 | |- ( _lcm ` (/) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ ZZ |
|
| 2 | 0fi | |- (/) e. Fin |
|
| 3 | noel | |- -. 0 e. (/) |
|
| 4 | 3 | nelir | |- 0 e/ (/) |
| 5 | lcmfn0val | |- ( ( (/) C_ ZZ /\ (/) e. Fin /\ 0 e/ (/) ) -> ( _lcm ` (/) ) = inf ( { n e. NN | A. m e. (/) m || n } , RR , < ) ) |
|
| 6 | 1 2 4 5 | mp3an | |- ( _lcm ` (/) ) = inf ( { n e. NN | A. m e. (/) m || n } , RR , < ) |
| 7 | ral0 | |- A. m e. (/) m || n |
|
| 8 | 7 | rgenw | |- A. n e. NN A. m e. (/) m || n |
| 9 | rabid2 | |- ( NN = { n e. NN | A. m e. (/) m || n } <-> A. n e. NN A. m e. (/) m || n ) |
|
| 10 | 8 9 | mpbir | |- NN = { n e. NN | A. m e. (/) m || n } |
| 11 | 10 | eqcomi | |- { n e. NN | A. m e. (/) m || n } = NN |
| 12 | 11 | infeq1i | |- inf ( { n e. NN | A. m e. (/) m || n } , RR , < ) = inf ( NN , RR , < ) |
| 13 | nninf | |- inf ( NN , RR , < ) = 1 |
|
| 14 | 6 12 13 | 3eqtri | |- ( _lcm ` (/) ) = 1 |