This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lble | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbreu | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝑆 | |
| 3 | nfriota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 6 | 3 4 5 | nfbr | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 |
| 7 | 2 6 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 |
| 8 | eqid | ⊢ ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) | |
| 9 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 | |
| 10 | nfcv | ⊢ Ⅎ 𝑦 𝑆 | |
| 11 | 9 10 | nfriota | ⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
| 12 | 11 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥 = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
| 13 | breq1 | ⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( 𝑥 ≤ 𝑦 ↔ ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) | |
| 14 | 12 13 | ralbid | ⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
| 15 | 7 8 14 | riotaprop | ⊢ ( ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
| 16 | 1 15 | syl | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
| 17 | 16 | simprd | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) |
| 18 | nfcv | ⊢ Ⅎ 𝑦 ≤ | |
| 19 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 20 | 11 18 19 | nfbr | ⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 |
| 21 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ↔ ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) ) | |
| 22 | 20 21 | rspc | ⊢ ( 𝐴 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) ) |
| 23 | 17 22 | mpan9 | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) |
| 24 | 23 | 3impa | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) |