This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lbinf | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → inf ( 𝑆 , ℝ , < ) = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | 1 | a1i | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → < Or ℝ ) |
| 3 | lbcl | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 ) | |
| 4 | ssel | ⊢ ( 𝑆 ⊆ ℝ → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ ℝ ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ ℝ ) ) |
| 6 | 3 5 | mpd | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ ℝ ) |
| 8 | ssel2 | ⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ℝ ) | |
| 9 | 8 | adantlr | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ℝ ) |
| 10 | lble | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝑧 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑧 ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑧 ) |
| 12 | 7 9 11 | lensymd | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∧ 𝑧 ∈ 𝑆 ) → ¬ 𝑧 < ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) |
| 13 | 2 6 3 12 | infmin | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → inf ( 𝑆 , ℝ , < ) = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) |