This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqfeq | |- ( ( J e. V /\ A e. X /\ B e. X ) -> ( ( F ` A ) = ( F ` B ) <-> A. y e. J ( A e. y <-> B e. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | 1 | kqfval | |- ( ( J e. V /\ A e. X ) -> ( F ` A ) = { y e. J | A e. y } ) |
| 3 | 2 | 3adant3 | |- ( ( J e. V /\ A e. X /\ B e. X ) -> ( F ` A ) = { y e. J | A e. y } ) |
| 4 | 1 | kqfval | |- ( ( J e. V /\ B e. X ) -> ( F ` B ) = { y e. J | B e. y } ) |
| 5 | 4 | 3adant2 | |- ( ( J e. V /\ A e. X /\ B e. X ) -> ( F ` B ) = { y e. J | B e. y } ) |
| 6 | 3 5 | eqeq12d | |- ( ( J e. V /\ A e. X /\ B e. X ) -> ( ( F ` A ) = ( F ` B ) <-> { y e. J | A e. y } = { y e. J | B e. y } ) ) |
| 7 | rabbi | |- ( A. y e. J ( A e. y <-> B e. y ) <-> { y e. J | A e. y } = { y e. J | B e. y } ) |
|
| 8 | 6 7 | bitr4di | |- ( ( J e. V /\ A e. X /\ B e. X ) -> ( ( F ` A ) = ( F ` B ) <-> A. y e. J ( A e. y <-> B e. y ) ) ) |