This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011) (Revised by NM, 11-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joinval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| joinval2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joinval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joinval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| joinval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | joinval2 | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joinval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | joinval2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | joinval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | joinval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | joinval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 8 | 7 3 4 5 6 | joinval | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 9 | biid | ⊢ ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) | |
| 10 | 5 6 | prssd | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝐵 ) |
| 11 | 1 2 7 9 4 10 | lubval | ⊢ ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 12 | 1 2 3 4 5 6 | joinval2lem | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 13 | 12 | riotabidv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 14 | 5 6 13 | syl2anc | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 15 | 8 11 14 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |