This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joinval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| joinval2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joinval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joinval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| joinval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| joinlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | ||
| Assertion | joineu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joinval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | joinval2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | joinval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | joinval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | joinval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | joinlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | |
| 8 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 9 | 8 3 4 5 6 | joindef | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ↔ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 10 | biid | ⊢ ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) | |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) → 𝐾 ∈ 𝑉 ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) → { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) | |
| 13 | 1 2 8 10 11 12 | lubeu | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 15 | 1 2 3 4 5 6 | joinval2lem | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 16 | 5 6 15 | syl2anc | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 17 | 16 | reubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 18 | 14 17 | sylibd | ⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) → ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 19 | 9 18 | sylbid | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ → ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 20 | 7 19 | mpd | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |