This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joindm2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joindm2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joindm2.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| joindm2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joindm3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | joindm3 | ⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joindm2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 3 | joindm2.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | joindm2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 5 | joindm3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 6 | 1 2 3 4 | joindm2 | ⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
| 7 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 8 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 9 | 7 8 | prssd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 10 | biid | ⊢ ( ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) | |
| 11 | 1 5 3 10 2 | lubeldm | ⊢ ( 𝜑 → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) ) ) |
| 12 | 11 | baibd | ⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ⊆ 𝐵 ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) ) |
| 13 | 9 12 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) ) |
| 14 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐾 ∈ 𝑉 ) |
| 15 | 1 5 4 14 7 8 | joinval2lem | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
| 16 | 15 | reubidv | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
| 18 | 13 17 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
| 19 | 18 | 2ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
| 20 | 6 19 | bitrd | ⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |