This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joindm2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joindm2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joindm2.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| joindm2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | joindm2 | ⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindm2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joindm2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 3 | joindm2.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | joindm2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 5 | 1 4 2 | joindmss | ⊢ ( 𝜑 → dom ∨ ⊆ ( 𝐵 × 𝐵 ) ) |
| 6 | eqss | ⊢ ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ( dom ∨ ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) ⊆ dom ∨ ) ) | |
| 7 | 6 | baib | ⊢ ( dom ∨ ⊆ ( 𝐵 × 𝐵 ) → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ( 𝐵 × 𝐵 ) ⊆ dom ∨ ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ( 𝐵 × 𝐵 ) ⊆ dom ∨ ) ) |
| 9 | relxp | ⊢ Rel ( 𝐵 × 𝐵 ) | |
| 10 | ssrel | ⊢ ( Rel ( 𝐵 × 𝐵 ) → ( ( 𝐵 × 𝐵 ) ⊆ dom ∨ ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ) ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝜑 → ( ( 𝐵 × 𝐵 ) ⊆ dom ∨ ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ) ) |
| 12 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 14 | vex | ⊢ 𝑥 ∈ V | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → 𝑥 ∈ V ) |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → 𝑦 ∈ V ) |
| 18 | 3 4 2 15 17 | joindef | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ↔ { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
| 19 | 13 18 | imbi12d | ⊢ ( 𝜑 → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) ) |
| 20 | 19 | 2albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) ) |
| 21 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) | |
| 22 | 20 21 | bitr4di | ⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
| 23 | 8 11 22 | 3bitrd | ⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |