This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Imaginary part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcnval.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgcnval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| Assertion | itgim | ⊢ ( 𝜑 → ( ℑ ‘ ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnval.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgcnval.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | 1 2 | itgcnval | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝜑 → ( ℑ ‘ ∫ 𝐴 𝐵 d 𝑥 ) = ( ℑ ‘ ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) ) |
| 5 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | 7 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 9 | 7 | iblcn | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 10 | 2 9 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 11 | 10 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 12 | 8 11 | itgrecl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℝ ) |
| 13 | 7 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 14 | 10 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 15 | 13 14 | itgrecl | ⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℝ ) |
| 16 | 12 15 | crimd | ⊢ ( 𝜑 → ( ℑ ‘ ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) = ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) |
| 17 | 4 16 | eqtrd | ⊢ ( 𝜑 → ( ℑ ‘ ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) |