This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function (recursively) that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by Thierry Arnoux, 28-Apr-2024) (Revised by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-itco | ⊢ IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | citco | ⊢ IterComp | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cvv | ⊢ V | |
| 3 | cc0 | ⊢ 0 | |
| 4 | vg | ⊢ 𝑔 | |
| 5 | vj | ⊢ 𝑗 | |
| 6 | 1 | cv | ⊢ 𝑓 |
| 7 | 4 | cv | ⊢ 𝑔 |
| 8 | 6 7 | ccom | ⊢ ( 𝑓 ∘ 𝑔 ) |
| 9 | 4 5 2 2 8 | cmpo | ⊢ ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) |
| 10 | vi | ⊢ 𝑖 | |
| 11 | cn0 | ⊢ ℕ0 | |
| 12 | 10 | cv | ⊢ 𝑖 |
| 13 | 12 3 | wceq | ⊢ 𝑖 = 0 |
| 14 | cid | ⊢ I | |
| 15 | 6 | cdm | ⊢ dom 𝑓 |
| 16 | 14 15 | cres | ⊢ ( I ↾ dom 𝑓 ) |
| 17 | 13 16 6 | cif | ⊢ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) |
| 18 | 10 11 17 | cmpt | ⊢ ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) |
| 19 | 9 18 3 | cseq | ⊢ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) |
| 21 | 0 20 | wceq | ⊢ IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) |