This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 25-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isuspgrop | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 〈 𝑉 , 𝐸 〉 ∈ USPGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | ⊢ 〈 𝑉 , 𝐸 〉 ∈ V | |
| 2 | eqid | ⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) | |
| 4 | 2 3 | isuspgr | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ V → ( 〈 𝑉 , 𝐸 〉 ∈ USPGraph ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) : dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) –1-1→ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 5 | 1 4 | mp1i | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 〈 𝑉 , 𝐸 〉 ∈ USPGraph ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) : dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) –1-1→ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 6 | opiedgfv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) | |
| 7 | 6 | dmeqd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = dom 𝐸 ) |
| 8 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) | |
| 9 | 8 | pweqd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝒫 𝑉 ) |
| 10 | 9 | difeq1d | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 11 | 10 | rabeqdv | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 12 | 6 7 11 | f1eq123d | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) : dom ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) –1-1→ { 𝑝 ∈ ( 𝒫 ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 13 | 5 12 | bitrd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( 〈 𝑉 , 𝐸 〉 ∈ USPGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |