This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 25-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isuspgrop | |- ( ( V e. W /\ E e. X ) -> ( <. V , E >. e. USPGraph <-> E : dom E -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. V , E >. e. _V |
|
| 2 | eqid | |- ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. ) |
|
| 3 | eqid | |- ( iEdg ` <. V , E >. ) = ( iEdg ` <. V , E >. ) |
|
| 4 | 2 3 | isuspgr | |- ( <. V , E >. e. _V -> ( <. V , E >. e. USPGraph <-> ( iEdg ` <. V , E >. ) : dom ( iEdg ` <. V , E >. ) -1-1-> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 5 | 1 4 | mp1i | |- ( ( V e. W /\ E e. X ) -> ( <. V , E >. e. USPGraph <-> ( iEdg ` <. V , E >. ) : dom ( iEdg ` <. V , E >. ) -1-1-> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 6 | opiedgfv | |- ( ( V e. W /\ E e. X ) -> ( iEdg ` <. V , E >. ) = E ) |
|
| 7 | 6 | dmeqd | |- ( ( V e. W /\ E e. X ) -> dom ( iEdg ` <. V , E >. ) = dom E ) |
| 8 | opvtxfv | |- ( ( V e. W /\ E e. X ) -> ( Vtx ` <. V , E >. ) = V ) |
|
| 9 | 8 | pweqd | |- ( ( V e. W /\ E e. X ) -> ~P ( Vtx ` <. V , E >. ) = ~P V ) |
| 10 | 9 | difeq1d | |- ( ( V e. W /\ E e. X ) -> ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
| 11 | 10 | rabeqdv | |- ( ( V e. W /\ E e. X ) -> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } = { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 12 | 6 7 11 | f1eq123d | |- ( ( V e. W /\ E e. X ) -> ( ( iEdg ` <. V , E >. ) : dom ( iEdg ` <. V , E >. ) -1-1-> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } <-> E : dom E -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 13 | 5 12 | bitrd | |- ( ( V e. W /\ E e. X ) -> ( <. V , E >. e. USPGraph <-> E : dom E -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |