This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a T_0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ist0-3 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) | |
| 2 | con34b | ⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) | |
| 3 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 4 | xor | ⊢ ( ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( 𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜 ) ) ) | |
| 5 | ancom | ⊢ ( ( 𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜 ) ↔ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) | |
| 6 | 5 | orbi2i | ⊢ ( ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( 𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜 ) ) ↔ ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) |
| 7 | 4 6 | bitri | ⊢ ( ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑜 ∈ 𝐽 ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) |
| 9 | rexnal | ⊢ ( ∃ 𝑜 ∈ 𝐽 ¬ ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) | |
| 10 | 8 9 | bitr3i | ⊢ ( ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) |
| 11 | 3 10 | imbi12i | ⊢ ( ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 12 | 2 11 | bitr4i | ⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) |
| 13 | 12 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) |
| 14 | 1 13 | bitrdi | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ∨ ( ¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜 ) ) ) ) ) |