This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Paths and simple paths
isspth
Metamath Proof Explorer
Description: Conditions for a pair of classes/functions to be a simple path (in an
undirected graph). (Contributed by Alexander van der Vekens , 21-Oct-2017) (Revised by AV , 9-Jan-2021) (Revised by AV , 29-Oct-2021)
Ref
Expression
Assertion
isspth
⊢ F SPaths ⁡ G P ↔ F Trails ⁡ G P ∧ Fun ⁡ P -1
Proof
Step
Hyp
Ref
Expression
1
spthsfval
⊢ SPaths ⁡ G = f p | f Trails ⁡ G p ∧ Fun ⁡ p -1
2
cnveq
⊢ p = P → p -1 = P -1
3
2
funeqd
⊢ p = P → Fun ⁡ p -1 ↔ Fun ⁡ P -1
4
3
adantl
⊢ f = F ∧ p = P → Fun ⁡ p -1 ↔ Fun ⁡ P -1
5
reltrls
⊢ Rel ⁡ Trails ⁡ G
6
1 4 5
brfvopabrbr
⊢ F SPaths ⁡ G P ↔ F Trails ⁡ G P ∧ Fun ⁡ P -1