This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issgrpd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| issgrpd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
| issgrpd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
| issgrpd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| issgrpd.v | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| Assertion | issgrpd | ⊢ ( 𝜑 → 𝐺 ∈ Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issgrpd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | issgrpd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
| 3 | issgrpd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 4 | issgrpd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 5 | issgrpd.v | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 6 | 3 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) ) |
| 7 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 8 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
| 9 | 7 8 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ) |
| 10 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 11 | 10 1 | eleq12d | ⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 12 | 6 9 11 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 14 | df-3an | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) | |
| 15 | 14 4 | sylan2br | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 16 | 15 | ex | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 17 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) |
| 18 | 9 17 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) ) |
| 19 | eqidd | ⊢ ( 𝜑 → 𝑧 = 𝑧 ) | |
| 20 | 2 10 19 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 21 | eqidd | ⊢ ( 𝜑 → 𝑥 = 𝑥 ) | |
| 22 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑦 + 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 23 | 2 21 22 | oveq123d | ⊢ ( 𝜑 → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 24 | 20 23 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 25 | 16 18 24 | 3imtr3d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 26 | 25 | impl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 27 | 26 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 28 | 13 27 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 29 | 28 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 31 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 32 | 30 31 | issgrpv | ⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
| 33 | 5 32 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
| 34 | 29 33 | mpbird | ⊢ ( 𝜑 → 𝐺 ∈ Smgrp ) |