This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| Assertion | isnghm3 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | 1 | isnghm2 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
| 3 | 1 | nmocl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 4 | 1 | nmoge0 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 5 | ge0gtmnf | ⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) → -∞ < ( 𝑁 ‘ 𝐹 ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → -∞ < ( 𝑁 ‘ 𝐹 ) ) |
| 7 | xrrebnd | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ↔ ( -∞ < ( 𝑁 ‘ 𝐹 ) ∧ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) ) | |
| 8 | 7 | baibd | ⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ -∞ < ( 𝑁 ‘ 𝐹 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |
| 9 | 3 6 8 | syl2anc | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |
| 10 | 2 9 | bitrd | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) < +∞ ) ) |