This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 30-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaeq | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsb1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 2 | df-clab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 3 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 4 | 1 2 3 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑦 ∣ 𝜑 } ) ) |
| 5 | 4 | eqrdv | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜑 } ) |
| 6 | 5 | eqeq1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( { 𝑥 ∣ 𝜑 } = { 𝑧 } ↔ { 𝑦 ∣ 𝜑 } = { 𝑧 } ) ) |
| 7 | 6 | abbidv | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑧 ∣ { 𝑥 ∣ 𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑦 ∣ 𝜑 } = { 𝑧 } } ) |
| 8 | 7 | unieqd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∪ { 𝑧 ∣ { 𝑥 ∣ 𝜑 } = { 𝑧 } } = ∪ { 𝑧 ∣ { 𝑦 ∣ 𝜑 } = { 𝑧 } } ) |
| 9 | df-iota | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑧 ∣ { 𝑥 ∣ 𝜑 } = { 𝑧 } } | |
| 10 | df-iota | ⊢ ( ℩ 𝑦 𝜑 ) = ∪ { 𝑧 ∣ { 𝑦 ∣ 𝜑 } = { 𝑧 } } | |
| 11 | 8 9 10 | 3eqtr4g | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜑 ) ) |