This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 30-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaeq | |- ( A. x x = y -> ( iota x ph ) = ( iota y ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsb1 | |- ( A. x x = y -> ( [ z / x ] ph <-> [ z / y ] ph ) ) |
|
| 2 | df-clab | |- ( z e. { x | ph } <-> [ z / x ] ph ) |
|
| 3 | df-clab | |- ( z e. { y | ph } <-> [ z / y ] ph ) |
|
| 4 | 1 2 3 | 3bitr4g | |- ( A. x x = y -> ( z e. { x | ph } <-> z e. { y | ph } ) ) |
| 5 | 4 | eqrdv | |- ( A. x x = y -> { x | ph } = { y | ph } ) |
| 6 | 5 | eqeq1d | |- ( A. x x = y -> ( { x | ph } = { z } <-> { y | ph } = { z } ) ) |
| 7 | 6 | abbidv | |- ( A. x x = y -> { z | { x | ph } = { z } } = { z | { y | ph } = { z } } ) |
| 8 | 7 | unieqd | |- ( A. x x = y -> U. { z | { x | ph } = { z } } = U. { z | { y | ph } = { z } } ) |
| 9 | df-iota | |- ( iota x ph ) = U. { z | { x | ph } = { z } } |
|
| 10 | df-iota | |- ( iota y ph ) = U. { z | { y | ph } = { z } } |
|
| 11 | 8 9 10 | 3eqtr4g | |- ( A. x x = y -> ( iota x ph ) = ( iota y ph ) ) |