This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iordsmo.1 | |- Ord A |
|
| Assertion | iordsmo | |- Smo ( _I |` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iordsmo.1 | |- Ord A |
|
| 2 | fnresi | |- ( _I |` A ) Fn A |
|
| 3 | rnresi | |- ran ( _I |` A ) = A |
|
| 4 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 5 | 1 4 | ax-mp | |- A C_ On |
| 6 | 3 5 | eqsstri | |- ran ( _I |` A ) C_ On |
| 7 | df-f | |- ( ( _I |` A ) : A --> On <-> ( ( _I |` A ) Fn A /\ ran ( _I |` A ) C_ On ) ) |
|
| 8 | 2 6 7 | mpbir2an | |- ( _I |` A ) : A --> On |
| 9 | fvresi | |- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
|
| 10 | 9 | adantr | |- ( ( x e. A /\ y e. A ) -> ( ( _I |` A ) ` x ) = x ) |
| 11 | fvresi | |- ( y e. A -> ( ( _I |` A ) ` y ) = y ) |
|
| 12 | 11 | adantl | |- ( ( x e. A /\ y e. A ) -> ( ( _I |` A ) ` y ) = y ) |
| 13 | 10 12 | eleq12d | |- ( ( x e. A /\ y e. A ) -> ( ( ( _I |` A ) ` x ) e. ( ( _I |` A ) ` y ) <-> x e. y ) ) |
| 14 | 13 | biimprd | |- ( ( x e. A /\ y e. A ) -> ( x e. y -> ( ( _I |` A ) ` x ) e. ( ( _I |` A ) ` y ) ) ) |
| 15 | dmresi | |- dom ( _I |` A ) = A |
|
| 16 | 8 1 14 15 | issmo | |- Smo ( _I |` A ) |