This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iocopn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| iocopn.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| iocopn.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| iocopn.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| iocopn.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 (,] 𝐵 ) ) | ||
| iocopn.alec | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
| iocopn.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | iocopn | ⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocopn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | iocopn.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 3 | iocopn.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | iocopn.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 5 | iocopn.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 (,] 𝐵 ) ) | |
| 6 | iocopn.alec | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
| 7 | iocopn.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 8 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 9 | 4 8 | eqeltri | ⊢ 𝐾 ∈ Top |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 11 | ovexd | ⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ∈ V ) | |
| 12 | iooretop | ⊢ ( 𝐶 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 13 | 12 4 | eleqtrri | ⊢ ( 𝐶 (,) +∞ ) ∈ 𝐾 |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 𝐶 (,) +∞ ) ∈ 𝐾 ) |
| 15 | elrestr | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 (,] 𝐵 ) ∈ V ∧ ( 𝐶 (,) +∞ ) ∈ 𝐾 ) → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ∈ ( 𝐾 ↾t ( 𝐴 (,] 𝐵 ) ) ) | |
| 16 | 10 11 14 15 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ∈ ( 𝐾 ↾t ( 𝐴 (,] 𝐵 ) ) ) |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
| 18 | 3 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
| 20 | elinel1 | ⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) | |
| 21 | elioore | ⊢ ( 𝑥 ∈ ( 𝐶 (,) +∞ ) → 𝑥 ∈ ℝ ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 23 | 22 | rexrd | ⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ℝ* ) |
| 25 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 26 | 25 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → +∞ ∈ ℝ* ) |
| 27 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
| 28 | ioogtlb | ⊢ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 𝐶 (,) +∞ ) ) → 𝐶 < 𝑥 ) | |
| 29 | 17 26 27 28 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐶 < 𝑥 ) |
| 30 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
| 31 | elinel2 | ⊢ ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 33 | iocleub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) | |
| 34 | 30 19 32 33 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ≤ 𝐵 ) |
| 35 | 17 19 24 29 34 | eliocd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) |
| 36 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 37 | 25 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → +∞ ∈ ℝ* ) |
| 38 | iocssre | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐶 (,] 𝐵 ) ⊆ ℝ ) | |
| 39 | 2 7 38 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) ⊆ ℝ ) |
| 40 | 39 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 41 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) | |
| 43 | iocgtlb | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 < 𝑥 ) | |
| 44 | 36 41 42 43 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐶 < 𝑥 ) |
| 45 | 40 | ltpnfd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 < +∞ ) |
| 46 | 36 37 40 44 45 | eliood | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐶 (,) +∞ ) ) |
| 47 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 48 | 40 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 49 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 50 | 47 36 48 49 44 | xrlelttrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝐴 < 𝑥 ) |
| 51 | iocleub | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) | |
| 52 | 36 41 42 51 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 53 | 47 41 48 50 52 | eliocd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 54 | 46 53 | elind | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) → 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ) |
| 55 | 35 54 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) ↔ 𝑥 ∈ ( 𝐶 (,] 𝐵 ) ) ) |
| 56 | 55 | eqrdv | ⊢ ( 𝜑 → ( ( 𝐶 (,) +∞ ) ∩ ( 𝐴 (,] 𝐵 ) ) = ( 𝐶 (,] 𝐵 ) ) |
| 57 | 5 | eqcomi | ⊢ ( 𝐾 ↾t ( 𝐴 (,] 𝐵 ) ) = 𝐽 |
| 58 | 57 | a1i | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 (,] 𝐵 ) ) = 𝐽 ) |
| 59 | 16 56 58 | 3eltr3d | ⊢ ( 𝜑 → ( 𝐶 (,] 𝐵 ) ∈ 𝐽 ) |