This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that intersections with Cartesian products are in a subclass relation. (Contributed by Peter Mazsa, 8-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpss2 | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | ⊢ Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) | |
| 2 | ssrel3 | ⊢ ( Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) → ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
| 4 | inxpss3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝑆 ∩ ( 𝐴 × 𝐵 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |