This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that intersections with Cartesian products are in a subclass relation. (Contributed by Peter Mazsa, 8-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpss2 | |- ( ( R i^i ( A X. B ) ) C_ ( S i^i ( A X. B ) ) <-> A. x e. A A. y e. B ( x R y -> x S y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | |- Rel ( R i^i ( A X. B ) ) |
|
| 2 | ssrel3 | |- ( Rel ( R i^i ( A X. B ) ) -> ( ( R i^i ( A X. B ) ) C_ ( S i^i ( A X. B ) ) <-> A. x A. y ( x ( R i^i ( A X. B ) ) y -> x ( S i^i ( A X. B ) ) y ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( R i^i ( A X. B ) ) C_ ( S i^i ( A X. B ) ) <-> A. x A. y ( x ( R i^i ( A X. B ) ) y -> x ( S i^i ( A X. B ) ) y ) ) |
| 4 | inxpss3 | |- ( A. x A. y ( x ( R i^i ( A X. B ) ) y -> x ( S i^i ( A X. B ) ) y ) <-> A. x e. A A. y e. B ( x R y -> x S y ) ) |
|
| 5 | 3 4 | bitri | |- ( ( R i^i ( A X. B ) ) C_ ( S i^i ( A X. B ) ) <-> A. x e. A A. y e. B ( x R y -> x S y ) ) |