This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxprnres | ⊢ ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | ⊢ Rel ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) | |
| 2 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 4 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑦 ) ) ) |
| 6 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑤 ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) ) |
| 8 | 5 7 | opelopabg | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 ∈ V ) → ( 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) ) |
| 9 | 8 | el2v | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) |
| 10 | brinxprnres | ⊢ ( 𝑤 ∈ V → ( 𝑧 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝑤 ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) ) | |
| 11 | 10 | elv | ⊢ ( 𝑧 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝑤 ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) |
| 12 | df-br | ⊢ ( 𝑧 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ) | |
| 13 | 9 11 12 | 3bitr2ri | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ↔ 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } ) |
| 14 | 1 2 13 | eqrelriiv | ⊢ ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } |