This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxprnres | |- ( R i^i ( A X. ran ( R |` A ) ) ) = { <. x , y >. | ( x e. A /\ x R y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | |- Rel ( R i^i ( A X. ran ( R |` A ) ) ) |
|
| 2 | relopabv | |- Rel { <. x , y >. | ( x e. A /\ x R y ) } |
|
| 3 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 4 | breq1 | |- ( x = z -> ( x R y <-> z R y ) ) |
|
| 5 | 3 4 | anbi12d | |- ( x = z -> ( ( x e. A /\ x R y ) <-> ( z e. A /\ z R y ) ) ) |
| 6 | breq2 | |- ( y = w -> ( z R y <-> z R w ) ) |
|
| 7 | 6 | anbi2d | |- ( y = w -> ( ( z e. A /\ z R y ) <-> ( z e. A /\ z R w ) ) ) |
| 8 | 5 7 | opelopabg | |- ( ( z e. _V /\ w e. _V ) -> ( <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } <-> ( z e. A /\ z R w ) ) ) |
| 9 | 8 | el2v | |- ( <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } <-> ( z e. A /\ z R w ) ) |
| 10 | brinxprnres | |- ( w e. _V -> ( z ( R i^i ( A X. ran ( R |` A ) ) ) w <-> ( z e. A /\ z R w ) ) ) |
|
| 11 | 10 | elv | |- ( z ( R i^i ( A X. ran ( R |` A ) ) ) w <-> ( z e. A /\ z R w ) ) |
| 12 | df-br | |- ( z ( R i^i ( A X. ran ( R |` A ) ) ) w <-> <. z , w >. e. ( R i^i ( A X. ran ( R |` A ) ) ) ) |
|
| 13 | 9 11 12 | 3bitr2ri | |- ( <. z , w >. e. ( R i^i ( A X. ran ( R |` A ) ) ) <-> <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } ) |
| 14 | 1 2 13 | eqrelriiv | |- ( R i^i ( A X. ran ( R |` A ) ) ) = { <. x , y >. | ( x e. A /\ x R y ) } |