This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the identity is the identity. (Contributed by AV, 8-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invid.i | ⊢ 𝐼 = ( Id ‘ 𝐶 ) | ||
| invid.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | invid | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invid.i | ⊢ 𝐼 = ( Id ‘ 𝐶 ) | |
| 3 | invid.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 2 3 4 | sectid | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |
| 6 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 8 | 1 6 3 4 4 7 | isinv | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ∧ ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 9 | 5 5 8 | mpbir2and | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |