This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009) Put in closed form and avoid ax-nul . (Revised by BJ, 17-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intidg | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } = { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ∈ V ) | |
| 2 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
| 3 | eleq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 4 | 1 2 3 | elabd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ∈ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ) |
| 5 | intss1 | ⊢ ( { 𝐴 } ∈ { 𝑥 ∣ 𝐴 ∈ 𝑥 } → ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ⊆ { 𝐴 } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ⊆ { 𝐴 } ) |
| 7 | id | ⊢ ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) | |
| 8 | 7 | ax-gen | ⊢ ∀ 𝑥 ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) |
| 9 | elintabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ↔ ∀ 𝑥 ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ) |
| 11 | 10 | snssd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ⊆ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ) |
| 12 | 6 11 | eqssd | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } = { 𝐴 } ) |