This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009) Put in closed form and avoid ax-nul . (Revised by BJ, 17-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intidg | |- ( A e. V -> |^| { x | A e. x } = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg | |- ( A e. V -> { A } e. _V ) |
|
| 2 | snidg | |- ( A e. V -> A e. { A } ) |
|
| 3 | eleq2 | |- ( x = { A } -> ( A e. x <-> A e. { A } ) ) |
|
| 4 | 1 2 3 | elabd | |- ( A e. V -> { A } e. { x | A e. x } ) |
| 5 | intss1 | |- ( { A } e. { x | A e. x } -> |^| { x | A e. x } C_ { A } ) |
|
| 6 | 4 5 | syl | |- ( A e. V -> |^| { x | A e. x } C_ { A } ) |
| 7 | id | |- ( A e. x -> A e. x ) |
|
| 8 | 7 | ax-gen | |- A. x ( A e. x -> A e. x ) |
| 9 | elintabg | |- ( A e. V -> ( A e. |^| { x | A e. x } <-> A. x ( A e. x -> A e. x ) ) ) |
|
| 10 | 8 9 | mpbiri | |- ( A e. V -> A e. |^| { x | A e. x } ) |
| 11 | 10 | snssd | |- ( A e. V -> { A } C_ |^| { x | A e. x } ) |
| 12 | 6 11 | eqssd | |- ( A e. V -> |^| { x | A e. x } = { A } ) |