This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inrresf | ⊢ ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djurf1o | ⊢ inr : V –1-1-onto→ ( { 1o } × V ) | |
| 2 | f1ofun | ⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → Fun inr ) | |
| 3 | ffvresb | ⊢ ( Fun inr → ( ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ dom inr ∧ ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ dom inr ∧ ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 5 | elex | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ V ) | |
| 6 | opex | ⊢ 〈 1o , 𝑥 〉 ∈ V | |
| 7 | df-inr | ⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) | |
| 8 | 6 7 | dmmpti | ⊢ dom inr = V |
| 9 | 5 8 | eleqtrrdi | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ dom inr ) |
| 10 | djurcl | ⊢ ( 𝑥 ∈ 𝐵 → ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) | |
| 11 | 9 10 | jca | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ dom inr ∧ ( inr ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 12 | 4 11 | mprgbir | ⊢ ( inr ↾ 𝐵 ) : 𝐵 ⟶ ( 𝐴 ⊔ 𝐵 ) |