This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infimum is unique. (Contributed by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| infeu.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | ||
| Assertion | infeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | infeu.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | |
| 3 | 1 | infmo | ⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
| 4 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ∧ ∃* 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) | |
| 5 | 2 3 4 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |