This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indiscrete topology on a set A expressed as a topological space. Here we show how to derive the structural version indistps from the direct component assignment version indistps2 . (Contributed by NM, 24-Oct-2012) (Revised by AV, 31-Oct-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indistpsALT.a | ⊢ 𝐴 ∈ V | |
| indistpsALT.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , { ∅ , 𝐴 } 〉 } | ||
| Assertion | indistpsALT | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistpsALT.a | ⊢ 𝐴 ∈ V | |
| 2 | indistpsALT.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , { ∅ , 𝐴 } 〉 } | |
| 3 | indistopon | ⊢ ( 𝐴 ∈ V → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) | |
| 4 | basendxlttsetndx | ⊢ ( Base ‘ ndx ) < ( TopSet ‘ ndx ) | |
| 5 | tsetndxnn | ⊢ ( TopSet ‘ ndx ) ∈ ℕ | |
| 6 | 2 4 5 | 2strbas | ⊢ ( 𝐴 ∈ V → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 7 | 1 6 | ax-mp | ⊢ 𝐴 = ( Base ‘ 𝐾 ) |
| 8 | prex | ⊢ { ∅ , 𝐴 } ∈ V | |
| 9 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 10 | 2 4 5 9 | 2strop | ⊢ ( { ∅ , 𝐴 } ∈ V → { ∅ , 𝐴 } = ( TopSet ‘ 𝐾 ) ) |
| 11 | 8 10 | ax-mp | ⊢ { ∅ , 𝐴 } = ( TopSet ‘ 𝐾 ) |
| 12 | 7 11 | tsettps | ⊢ ( { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ TopSp ) |
| 13 | 1 3 12 | mp2b | ⊢ 𝐾 ∈ TopSp |